Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies.

Autor: Zu F; Institut für Physik & IRIS Adlershof , Humboldt-Universität zu Berlin , 12489 Berlin , Germany.; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany., Wolff CM; Institut für Physik und Astronomie , Universität Potsdam , 14776 Potsdam , Germany., Ralaiarisoa M; Institut für Physik & IRIS Adlershof , Humboldt-Universität zu Berlin , 12489 Berlin , Germany., Amsalem P; Institut für Physik & IRIS Adlershof , Humboldt-Universität zu Berlin , 12489 Berlin , Germany., Neher D; Institut für Physik und Astronomie , Universität Potsdam , 14776 Potsdam , Germany., Koch N; Institut für Physik & IRIS Adlershof , Humboldt-Universität zu Berlin , 12489 Berlin , Germany.; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 12489 Berlin , Germany.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2019 Jun 19; Vol. 11 (24), pp. 21578-21583. Date of Electronic Publication: 2019 Jun 05.
DOI: 10.1021/acsami.9b05293
Abstrakt: The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites' photophysical properties.
Databáze: MEDLINE