Coating stability and insertion forces of an alginate-cell-based drug delivery implant system for the inner ear.
Autor: | Hügl S; Hannover Medical School (MHH), Department of Otolaryngology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence EXC 1077/1 'Hearing4all', Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany., Scheper V; Hannover Medical School (MHH), Department of Otolaryngology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence EXC 1077/1 'Hearing4all', Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany., Gepp MM; Fraunhofer-Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany; Fraunhofer-Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082, Würzburg, Germany., Lenarz T; Hannover Medical School (MHH), Department of Otolaryngology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence EXC 1077/1 'Hearing4all', Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany., Rau TS; Hannover Medical School (MHH), Department of Otolaryngology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence EXC 1077/1 'Hearing4all', Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany., Schwieger J; Hannover Medical School (MHH), Department of Otolaryngology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Electronic address: Schwieger.jana@mh-hannover.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2019 Sep; Vol. 97, pp. 90-98. Date of Electronic Publication: 2019 May 04. |
DOI: | 10.1016/j.jmbbm.2019.05.007 |
Abstrakt: | Long-term drug delivery to the inner ear for neuroprotection might improve the outcome for hearing disabled patients treated with a cochlear implant (CI). Neurotrophic factor (NTF) producing cells encapsulated in an alginate-matrix, to shield them from the host immune system and to avoid migration, and applied as viscose solution or electrode coating could address this requirement. Both application methods were tested for their feasibility in an artificial human cochlea model. Since both strategies potentially influence the electrode implantability, insertion forces and coating stability were analyzed on custom-made electrode arrays. Both, injection of the alginate-cell solution into the model and a manual dip coating of electrode arrays with subsequent insertion into the model were possible. The insertion forces of coated arrays were reduced by 75% of an uncoated reference. In contrast, filling of the model with non-crosslinked alginate-cell solution slightly increased the insertion forces. A good stability of the coating was observed after first insertion (85%) but abrasion increased after multiple insertions (50%). Both application strategies are possible options for cell-induced drug-delivery to the inner ear, but an alginate-cell coating of CI-electrodes has a great potential to combine an endogenous NTF-source with a strong reduction of insertion forces. (Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |