Granular aluminium as a superconducting material for high-impedance quantum circuits.

Autor: Grünhaupt L; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Spiecker M; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Gusenkova D; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Maleeva N; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Skacel ST; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Takmakov I; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.; Russian Quantum Center, National University of Science and Technology MISIS, Moscow, Russia., Valenti F; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.; Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Winkel P; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Rotzinger H; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany., Wernsdorfer W; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Ustinov AV; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.; Russian Quantum Center, National University of Science and Technology MISIS, Moscow, Russia., Pop IM; Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany. ioan.pop@kit.edu.; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany. ioan.pop@kit.edu.
Jazyk: angličtina
Zdroj: Nature materials [Nat Mater] 2019 Aug; Vol. 18 (8), pp. 816-819. Date of Electronic Publication: 2019 Apr 29.
DOI: 10.1038/s41563-019-0350-3
Abstrakt: Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, about 100 Ω, and small anharmonicity, which can limit their coherence and logic gate fidelity 1,2 . A promising alternative is circuits based on so-called superinductors 3-6 , with characteristic impedances exceeding the resistance quantum R Q  = 6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays 7,8 , can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here, we present a fluxonium qubit design based on a granular aluminium superinductor strip 9-11 . We show that granular aluminium can form an effective junction array with high kinetic inductance and be in situ integrated with standard aluminium circuit processing. The measured qubit coherence time [Formula: see text] illustrates the potential of granular aluminium for applications ranging from protected qubit designs to quantum-limited amplifiers and detectors.
Databáze: MEDLINE