Antimicrobial activity of Mimosa caesalpiniifolia Benth and its interaction with antibiotics against Staphylococcus aureus strains overexpressing efflux pump genes.

Autor: Silva SWC; Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil., Monção NBN; Agricultural College of Floriano, Federal University of Piauí (UFPI), Floriano, Brazil., Araújo BQ; Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil., Arcanjo DDR; Department of Biophysics and Physiology, Federal University of Piauí (UFPI), Teresina, Brazil., Ferreira JHL; Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil., Lima Neto JS; Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil., Citó AMGL; Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil., de Siqueira Júnior JP; Laboratory of Genetics of Microorganisms, Federal University of Paraiba (UFPB), João Pessoa, Brazil., Kaatz GW; Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA., Barreto HM; Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil.
Jazyk: angličtina
Zdroj: Letters in applied microbiology [Lett Appl Microbiol] 2019 Jul; Vol. 69 (1), pp. 57-63. Date of Electronic Publication: 2019 May 15.
DOI: 10.1111/lam.13163
Abstrakt: This study aimed to evaluate the antimicrobial activity of the dichloromethane fraction (DCMF) from the stem bark of Mimosa caesalpiniifolia and its effect on the activity of conventional antibiotics against Staphylococcus aureus strains overexpressing specific efflux pump genes. DCMF showed activity against S. aureus, Staphylococcus epidermidis and Candida albicans. Addition of DCMF at subinhibitory concentrations to the growth media enhanced the activity of norfloxacin, ciprofloxacin and ethidium bromide against S. aureus strains overexpressing norA suggesting the presence of efflux pump inhibitors in its composition. Similar results were verified for tetracycline against S. aureus overexpressing tetK, as well as, for ethidium bromide against S. aureus overexpressing qacC. These results indicate that M. caesalpiniifolia is a source of molecules able to modulate the fluoroquinolone- and tetracycline-resistance in S. aureus probably by inhibition of NorA, TetK and QacC respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is a common problem in patients with infectious diseases. Dichloromethane fraction from the stem bark of Mimosa caesalpiniifolia showed antimicrobial activity against Gram-positive bacterium Staphylococcus aureus and against Candida albicans, but did not show activity against Gram-negative specie Escherichia coli. Moreover, this fraction was able to potentiate the action of norfloxacin, ciprofloxacin and tetracycline against S. aureus strains overexpressing different efflux pump genes. Thus, Mimosa caesalpiniifolia is a source of efflux pump inhibitors which could be used in combination with fluoroquinolones or tetracycline in the treatment of infectious diseases caused by S. aureus strains overexpressing efflux pump genes.
(© 2019 The Society for Applied Microbiology.)
Databáze: MEDLINE