Biodegradation of long chain alkanes in halophilic conditions by Alcanivorax sp. strain Est-02 isolated from saline soil.

Autor: SadrAzodi SM; 1Extremophile Lab, Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran., Shavandi M; 2Ecology and Environmental Pollution Control Research Group, Research institute of petroleum industry (RIPI), Tehran, Iran., Amoozegar MA; 1Extremophile Lab, Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran., Mehrnia MR; 3School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Jazyk: angličtina
Zdroj: 3 Biotech [3 Biotech] 2019 Apr; Vol. 9 (4), pp. 141. Date of Electronic Publication: 2019 Mar 15.
DOI: 10.1007/s13205-019-1670-3
Abstrakt: In this study, through a multistep enrichment and isolation procedure, a halophilic bacterial strain was isolated from unpolluted saline soil, which was able to effectively and preferentially degrade long chain alkanes (especially tetracosane and octacosane). The strain was identified by 16S rRNA gene sequence as an Alcanivorax sp. The growth of strain Est-02 was optimized at the presence of tetracosane in different NaCl concentrations, temperatures, and pH. The consumption of different heavy alkanes was also investigated. Optimal culture conditions of the strain were determined to be as follows: 10% NaCl, temperature 25-35 °C and pH 7. Alcanivorax sp. strain Est-02 was able to use a wide range of aliphatic substrates ranging from C 14 to C 28 with clear tendency to utilize heavy chain hydrocarbons of C 24 and C 28 . During growth on a mixture of alkanes (C 14 -C 28 ), the strain consumed 60% and 65% of tetracosane and octacosane, respectively, while only about 40% of the lower chain alkanes were degraded. This unique ability of the strain Est-02 in efficient and selective biodegradation of long chain hydrocarbons could be further exploited for remediation of wax and heavy oil contaminated soils or upgrading of heavy crude oils. Comparison of the sequence of alkane hydroxylase gene ( alkB ) of strain Est-02 with previously reported sequences for Alcanivorax spp. and other hydrocarbon degraders, showed a remarkable phylogenetic distance between the sequence alkB of Est-02 and other alkane-degrading bacteria.
Competing Interests: Compliance with ethical standardsThe authors declare that they have no conflict of interest regarding the publication of this paper.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje