A high-throughput transient expression system for rice.
Autor: | Page MT; Lancaster Environment Centre, Lancaster University, Lancaster, UK., Parry MAJ; Lancaster Environment Centre, Lancaster University, Lancaster, UK., Carmo-Silva E; Lancaster Environment Centre, Lancaster University, Lancaster, UK. |
---|---|
Jazyk: | angličtina |
Zdroj: | Plant, cell & environment [Plant Cell Environ] 2019 Jul; Vol. 42 (7), pp. 2057-2064. Date of Electronic Publication: 2019 Apr 02. |
DOI: | 10.1111/pce.13542 |
Abstrakt: | Rice is an important global crop and represents a vital source of calories for many food insecure regions. Efforts to improve this crop by improving yield, nutritional content, stress tolerance, or resilience to climate change are certain to include biotechnological approaches, which rely on the expression of transgenes in planta. The throughput and cost of currently available transgenic expression systems is frequently incompatible with modern, high-throughput molecular cloning methods. Here, we present a protocol for isolating high yields of green rice protoplasts and for PEG-mediated transformation of isolated protoplasts. Factors affecting transformation efficiency were investigated, and the resulting protocol is fast, cheap, robust, high-throughput, and does not require specialist equipment. When coupled to a high-throughput modular cloning system such as Golden Gate, this transient expression system provides a valuable resource to help break the "design-build-test" bottleneck by permitting the rapid screening of large numbers of transgenic expression cassettes prior to stable plant transformation. We used this system to rapidly assess the expression level, subcellular localisation, and protein aggregation pattern of nine single-gene expression cassettes, which represent the essential component parts of the β-cyanobacterial carboxysome. (© 2019 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |