One- and Two-Dimensional High-Resolution NMR from Flat Surfaces.

Autor: Walder BJ; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland., Berk C; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Liao WC; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Rossini AJ; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.; Department of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States., Schwarzwälder M; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Pradere U; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Hall J; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Lesage A; Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France., Copéret C; Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland., Emsley L; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Jazyk: angličtina
Zdroj: ACS central science [ACS Cent Sci] 2019 Mar 27; Vol. 5 (3), pp. 515-523. Date of Electronic Publication: 2019 Feb 11.
DOI: 10.1021/acscentsci.8b00916
Abstrakt: Determining atomic-level characteristics of molecules on two-dimensional surfaces is one of the fundamental challenges in chemistry. High-resolution nuclear magnetic resonance (NMR) could deliver rich structural information, but its application to two-dimensional materials has been prevented by intrinsically low sensitivity. Here we obtain high-resolution one- and two-dimensional 31 P NMR spectra from as little as 160 picomoles of oligonucleotide functionalities deposited onto silicate glass and sapphire wafers. This is enabled by a factor >10 5 improvement in sensitivity compared to typical NMR approaches from combining dynamic nuclear polarization methods, multiple-echo acquisition, and optimized sample formulation. We demonstrate that, with this ultrahigh NMR sensitivity, 31 P NMR can be used to observe DNA bound to miRNA, to sense conformational changes due to ion binding, and to follow photochemical degradation reactions.
Competing Interests: The authors declare no competing financial interest.
Databáze: MEDLINE