Abstrakt: |
Coupling of electric and magnetic responses of a scatterer, known as bianisotropy, enables rich physics and unique optical phenomena, including asymmetric absorption or reflection, one-way transparency, and photonic topological phases. Here we demonstrate yet another feature stemming from bianisotropic response, namely, polarization-dependent scattering of light by bianisotropic dielectric meta-atom with broken mirror symmetry, which yields a photonic analogue of spin Hall effect. Based on a simple dipole model, we explain the origin of the effect confirming our conclusions by experimental observation of photonic spin Hall effect both for a single meta-atom and for an array of them. |