Neuromuscular control pattern in rhesus monkeys during bipedal walking.

Autor: Wei RH; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Zhao C; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.; School of Instrumentation and Optoelectronic Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Rao JS; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Zhao W; Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China., Wei YQ; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Zhou X; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Tian PY; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Liu RX; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China., Yang ZY; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.; Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China., Li XG; Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.; Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China.
Jazyk: angličtina
Zdroj: Experimental animals [Exp Anim] 2019 Aug 14; Vol. 68 (3), pp. 341-349. Date of Electronic Publication: 2019 Apr 01.
DOI: 10.1538/expanim.18-0180
Abstrakt: Walking is characterized by repetitive limb movements associated with highly structured patterns of muscle activity. The causal relationships between the muscle activities and hindlimb segments of walking are difficult to decipher. This study investigated these particular relationships and clarified whether they are correlated with speed to further understand the neuromuscular control pattern. Four adult female rhesus monkeys (Macaca mulatta) were selected to record gait parameters while walking on a bipedal treadmill at speeds of 0.2, 0.8, 1.4, and 2.0 km/h. We recorded 3 ipsilateral hindlimb muscles by surface recording. In this study, we calculated the correlations between electromyography (EMG) and kinematic parameters (24 EMG*17 kinematic parameters). Of the 408 calculated coefficients, 71.6% showed significant linear correlations. Significant linear correlations were found between muscle activity, such as burst amplitudes and the integral of muscle activity, and the corresponding kinematic parameters of each joint. Most of these relationships were speed independent (91.7% of all variables). Through correlation analysis, this study demonstrated a causal association between kinematic and EMG patterns of rhesus monkey locomotion. Individuals have particular musculoskeletal control patterns, and most of the relationships between hindlimb segments and muscles are speed independent. The current findings may enhance our understanding of neuromusculoskeletal control strategies.
Databáze: MEDLINE