Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis.
Autor: | Paviolo C; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France; Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France., Soria FN; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, IMN UMR 5293, 33076 Bordeaux, France., Ferreira JS; Université de Bordeaux, Interdisciplinary Institute for Neurosciences, UMR 5297, 33076 Bordeaux, France; CNRS, IINS UMR 5297, 33076 Bordeaux, France., Lee A; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France; Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France., Groc L; Université de Bordeaux, Interdisciplinary Institute for Neurosciences, UMR 5297, 33076 Bordeaux, France; CNRS, IINS UMR 5297, 33076 Bordeaux, France., Bezard E; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, IMN UMR 5293, 33076 Bordeaux, France., Cognet L; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France; Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France. Electronic address: laurent.cognet@u-bordeaux.fr. |
---|---|
Jazyk: | angličtina |
Zdroj: | Methods (San Diego, Calif.) [Methods] 2020 Mar 01; Vol. 174, pp. 91-99. Date of Electronic Publication: 2019 Mar 09. |
DOI: | 10.1016/j.ymeth.2019.03.005 |
Abstrakt: | The brain extracellular space (ECS) is a system of narrow compartments whose intricate nanometric structure has remained elusive until very recently. Understanding such a complex organisation represents a technological challenge that requires a technique able to resolve these nanoscopic spaces and simultaneously characterize their rheological properties. We recently used single-walled carbon nanotubes (SWCNTs) as near-infrared fluorescent probes to map with nanoscale precision the local organization and rheology of the ECS. Here we expand our method by tracking single nanotubes through super-resolution imaging in rat organotypic hippocampal slices and acute brain slices from adult mice, pioneering the exploration of the adult brain ECS at the nanoscale. We found a highly heterogeneous ECS, where local rheological properties can change drastically within few nanometres. Our results suggest differences in local ECS diffusion environments in organotypic slices when compared to adult mouse slices. Data obtained from super-resolved maps of the SWCNT trajectories indicate that ECS widths may vary between brain tissue models, with a looser, less crowded nano-environment in organotypic cultured slices. (Copyright © 2019 Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |