Wavelength-scale errors in optical localization due to spin-orbit coupling of light.

Autor: Araneda G; Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria., Walser S; Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria., Colombe Y; Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria., Higginbottom DB; Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.; Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia., Volz J; Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria., Blatt R; Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria., Rauschenbeutel A; Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria.; Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
Jazyk: angličtina
Zdroj: Nature physics [Nat Phys] 2019 Jan; Vol. 15 (1), pp. 17-21. Date of Electronic Publication: 2018 Oct 15.
DOI: 10.1038/s41567-018-0301-y
Abstrakt: Far-field optical imaging techniques allow the determination of the position of point-like emitters and scatterers [1-3]. Although the optical wavelength sets a fundamental limit to the image resolution of unknown objects, the position of an individual emitter can in principle be estimated from the image with arbitrary precision. This is used for example in the determination of stars position [4] or in optical super-resolution microscopy [5]. Furthermore, precise position determination is an experimental prerequisite for the manipulation and measurement of individual quantum systems, such as atoms, ions, and solid-state-based quantum emitters [6-8]. Here we demonstrate that spin-orbit coupling of light in the emission of elliptically polarized emitters can lead to systematic, wavelength-scale errors in the estimation of the emitters position. Imaging a single trapped atom as well as a single sub-wavelength-diameter gold nanoparticle, we demonstrate a shift between the emitters measured and actual positions which is comparable to the optical wavelength. For certain settings, the expected shift can become arbitrarily large. Beyond optical imaging techniques, our findings could be relevant for the localization of objects using any type of wave that carries orbital angular momentum relative to the emitters position with a component orthogonal to the direction of observation.
Competing Interests: Competing financial interests The authors declare no competing financial interests.
Databáze: MEDLINE