Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone.
Autor: | Tixier F; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Um H; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Bermudez D; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Iyer A; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Apte A; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Graham MS; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Nevel KS; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.; Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA., Deasy JO; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Young RJ; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA., Veeraraghavan H; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Oncotarget [Oncotarget] 2019 Jan 18; Vol. 10 (6), pp. 660-672. Date of Electronic Publication: 2019 Jan 18 (Print Publication: 2019). |
DOI: | 10.18632/oncotarget.26578 |
Abstrakt: | Background: Glioblastoma (GBM) is the most common malignant central nervous system tumor, and MGMT promoter hypermethylation in this tumor has been shown to be associated with better prognosis. We evaluated the capacity of radiomics features to add complementary information to MGMT status, to improve the ability to predict prognosis. Methods: 159 patients with untreated GBM were included in this study and divided into training and independent test sets. 286 radiomics features were extracted from the magnetic resonance images acquired prior to any treatments. A least absolute shrinkage selection operator (LASSO) selection followed by Kaplan-Meier analysis was used to determine the prognostic value of radiomics features to predict overall survival (OS). The combination of MGMT status with radiomics was also investigated and all results were validated on the independent test set. Results: LASSO analysis identified 8 out of the 286 radiomic features to be relevant which were then used for determining association to OS. One feature (edge descriptor) remained significant on the external validation cohort after multiple testing (p=0.04) and the combination with MGMT identified a group of patients with the best prognosis with a survival probability of 0.61 after 43 months (p=0.0005). Conclusion: Our results suggest that combining radiomics with MGMT is more accurate in stratifying patients into groups of different survival risks when compared to with using these predictors in isolation. We identified two subgroups within patients who have methylated MGMT : one with a similar survival to unmethylated MGMT patients and the other with a significantly longer OS. Competing Interests: CONFLICTS OF INTEREST The authors declare no competing interests. |
Databáze: | MEDLINE |
Externí odkaz: |