Autor: |
Matter MT; Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland.; Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland., Furer LA; Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland., Starsich FHL; Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland., Fortunato G; Laboratory for Biomimetic Membranes and Textiles, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland., Pratsinis SE; Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland., Herrmann IK; Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland. |
Abstrakt: |
Despite its use as a highly efficient and reusable catalyst in research and industrial settings, cerium oxide nanoparticles or nanoceria have yet to gain a foothold in the biomedical field. A variety of beneficial effects of nanoceria have been demonstrated, including its use as an inorganic nanoenzyme to mimic antioxidant enzymes, to protect mammalian cells, and to suppress microbial growth. While these properties are of high interest for wound-management applications, the literature offers contradicting reports on toxicity and enzymatic activity of nanoceria. These discrepancies can be attributed to differences between synthesis methods and insufficient physicochemical characterization, leading to incomparable studies. The activity of nanoceria is mostly governed by its Ce 3+ /Ce 4+ ratio which needs to be controlled to compare different nanoceria systems. In this work, we demonstrate that liquid-feed flame spray pyrolysis offers excellent control over the oxidation state in a one-step synthesis of nanoceria. This control allows a comprehensive comparison of different types of ceria nanoparticles. We connect physicochemical characteristics to biomedically relevant properties such as superoxide dismutase and catalase mimicry, human monocyte and macrophage protection, and antimicrobial activity. Furthermore, we demonstrate how the synthesis method also allows tailoring the properties of ceria/bioglass hybrid nanoparticles, thus creating nanoparticles with manifold biomedical prospects. |