3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds.

Autor: Oran D; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Rodriques SG; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Gao R; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Asano S; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Pfizer Internal Medicine Research Unit, Cambridge, MA 02139, USA., Skylar-Scott MA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138, USA., Chen F; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Tillberg PW; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Marblestone AH; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Boyden ES; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. esb@media.mit.edu.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Jazyk: angličtina
Zdroj: Science (New York, N.Y.) [Science] 2018 Dec 14; Vol. 362 (6420), pp. 1281-1285.
DOI: 10.1126/science.aau5119
Abstrakt: Lithographic nanofabrication is often limited to successive fabrication of two-dimensional (2D) layers. We present a strategy for the direct assembly of 3D nanomaterials consisting of metals, semiconductors, and biomolecules arranged in virtually any 3D geometry. We used hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We then optically patterned these scaffolds in three dimensions, attached one or more functional materials, and then shrank and dehydrated them in a controlled way to achieve nanoscale feature sizes in a solid substrate. We demonstrate that our process, Implosion Fabrication (ImpFab), can directly write highly conductive, 3D silver nanostructures within an acrylic scaffold via volumetric silver deposition. Using ImpFab, we achieve resolutions in the tens of nanometers and complex, non-self-supporting 3D geometries of interest for optical metamaterials.
(Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje