Muography applications developed by IFIN-HH.
Autor: | Mitrica B; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Stanca D; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania denis.stanca@nipne.ro., Cautisanu B; Department of Physics, University of Bucharest, PO Box MG-11, Romania., Niculescu-Oglinzanu M; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Balaceanu A; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Gherghel-Lascu A; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Munteanu A; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Saftoiu A; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Mosu T; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Margineanu R; Horia Hulubei National Institute for Nuclear Physics and Engineering, PO Box MG-6, 077125 Bucharest-Magurele, Romania., Alkotbe B; Department of Physics, University of Bucharest, PO Box MG-11, Romania. |
---|---|
Jazyk: | angličtina |
Zdroj: | Philosophical transactions. Series A, Mathematical, physical, and engineering sciences [Philos Trans A Math Phys Eng Sci] 2018 Dec 10; Vol. 377 (2137). Date of Electronic Publication: 2018 Dec 10. |
DOI: | 10.1098/rsta.2018.0137 |
Abstrakt: | Cosmic-ray muons have been studied at IFIN-HH for more than 20 years. Starting as fundamental physics research, the muon flux measurements bring new directions of study regarding muography. Two new directions have been recently developed: underground muon scanning of old mining sites in order to detect the possible presence of unknown cavities and underwater scanning of ships in commercial harbours in order to prevent the illegal traffic of radioactive materials. The main goal of the first direction of study is to improve the security of underground civilian and industrial infrastructures, by starting the development of a new, innovative detection system that can be used to identify potentially dangerous conditions using a non-invasive, totally safe method. The method proposed uses information provided by a device placed underground that measures directional cosmic muon flux and identifies anomalies produced by irregularities in the geological layers above. For the second direction of study, the method proposed is based on the detection and analysis of the cosmic muon flux. The high-density materials (uranium, lead-used for radiation shielding, etc.) cause a decrease in the directional muon flux. The detection system will be submerged underneath the ship that will be scanned, being able to locate illegal radioactive materials without exposing any personnel to radiation or contamination. Correlated with simulations based on the known configuration of the ship scanned, the data provided by the detection system will provide the location and dimensions of the undeclared material transported.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'. (© 2018 The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |