Geochemical and Isotope Study of Trichloroethene Degradation in a Zero-Valent Iron Permeable Reactive Barrier: A Twenty-Two-Year Performance Evaluation.

Autor: Wilkin RT; U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States., Lee TR; U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States., Sexton MR; U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States., Acree SD; U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States., Puls RW; PulsEnvironmental Consulting , Hilton Head , South Carolina 29926 , United States., Blowes DW; Department of Earth and Environmental Sciences , University of Waterloo , Waterloo , Ontario Canada , N2L 3G1., Kalinowski C; Arcadis U.S., Inc. , 801 Corporate Center Drive, Suite 300 , Raleigh , North Carolina 27607 , United States., Tilton JM; Arcadis U.S., Inc. , 801 Corporate Center Drive, Suite 300 , Raleigh , North Carolina 27607 , United States., Woods LL; U.S. Coast Guard Base , 1664 Weeksville Road, Bldg 981 , Elizabeth City , North Carolina 27909 , United States.
Jazyk: angličtina
Zdroj: Environmental science & technology [Environ Sci Technol] 2019 Jan 02; Vol. 53 (1), pp. 296-306. Date of Electronic Publication: 2018 Dec 20.
DOI: 10.1021/acs.est.8b04081
Abstrakt: This study provides a twenty-two-year record of in situ degradation of chlorinated organic compounds by a granular iron permeable reactive barrier (PRB). Groundwater concentrations of trichloroethene (TCE) entering the PRB were as high as 10670 μg/L. Treatment efficiency ranged from 81 to >99%, and TCE concentrations from <1 μg/L to 165 μg/L were detected within and hydraulically down-gradient of the PRB. After 18 years, effluent TCE concentrations were above the maximum contaminant level (MCL) along segments of the PRB exhibiting upward trending influent TCE. Degradation products included cis-dichloroethene ( cis-DCE), vinyl chloride (VC), ethene, ethane, >C4 compounds, and possibly CO 2(aq) and methane. Abiotic patterns of TCE degradation were indicated by compound-specific stable isotope data and the distribution of degradation products. δ 13 C values of methane within and down-gradient of the PRB varied widely from -94‰ to -16‰; these values cover most of the isotopic range encountered in natural methanogenic systems. Methanogenesis is a sink for inorganic carbon in zerovalent iron PRBs that competes with carbonate mineralization, and this process is important for understanding pore-space clogging and longevity of iron-based PRBs. The carbon isotope signatures of methane and inorganic carbon were consistent with open-system behavior and 22% molar conversion of CO 2(aq) to methane.
Databáze: MEDLINE