Response properties of single neurons in higher level auditory cortex of adult songbirds.

Autor: Bottjer SW; Section of Neurobiology, University of Southern California , Los Angeles, California., Ronald AA; Section of Neurobiology, University of Southern California , Los Angeles, California., Kaye T; Section of Neurobiology, University of Southern California , Los Angeles, California.
Jazyk: angličtina
Zdroj: Journal of neurophysiology [J Neurophysiol] 2019 Jan 01; Vol. 121 (1), pp. 218-237. Date of Electronic Publication: 2018 Nov 21.
DOI: 10.1152/jn.00751.2018
Abstrakt: The caudomedial nidopallium (NCM) is a higher level region of auditory cortex in songbirds that has been implicated in encoding learned vocalizations and mediating perception of complex sounds. We made cell-attached recordings in awake adult male zebra finches ( Taeniopygia guttata) to characterize responses of single NCM neurons to playback of tones and songs. Neurons fell into two broad classes: narrow fast-spiking cells and broad sparsely firing cells. Virtually all narrow-spiking cells responded to playback of pure tones, compared with approximately half of broad-spiking cells. In addition, narrow-spiking cells tended to have lower thresholds and faster, less variable spike onset latencies than did broad-spiking cells, as well as higher firing rates. Tonal responses of narrow-spiking cells also showed broader ranges for both frequency and amplitude compared with broad-spiking neurons and were more apt to have V-shaped tuning curves compared with broad-spiking neurons, which tended to have complex (discontinuous), columnar, or O-shaped frequency response areas. In response to playback of conspecific songs, narrow-spiking neurons showed high firing rates and low levels of selectivity whereas broad-spiking neurons responded sparsely and selectively. Broad-spiking neurons in which tones failed to evoke a response showed greater song selectivity compared with those with a clear tuning curve. These results are consistent with the idea that narrow-spiking neurons represent putative fast-spiking interneurons, which may provide a source of intrinsic inhibition that contributes to the more selective tuning in broad-spiking cells. NEW & NOTEWORTHY The response properties of neurons in higher level regions of auditory cortex in songbirds are of fundamental interest because processing in such regions is essential for vocal learning and plasticity and for auditory perception of complex sounds. Within a region of secondary auditory cortex, neurons with narrow spikes exhibited high firing rates to playback of both tones and multiple conspecific songs, whereas broad-spiking neurons responded sparsely and selectively to both tones and songs.
Databáze: MEDLINE