Autor: |
Gálvez S; Departamento de Lenguajes y Ciencias de la Computación, ETSI Informática, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain. galvez@uma.es., Mérida-García R; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain., Camino C; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain., Borrill P; John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK., Abrouk M; Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, CZ-78371, Olomouc, Czech Republic.; Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia., Ramírez-González RH; John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK., Biyiklioglu S; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA., Amil-Ruiz F; Bioinformatics Unit, SCAI, Campus Rabanales, University of Córdoba, 14014, Córdoba, Spain., Dorado G; Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Campus Rabanales C6-1-E17, 14071, Córdoba, Spain., Budak H; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA., Gonzalez-Dugo V; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain., Zarco-Tejada PJ; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain. pablo.zarco@csic.es., Appels R; Veterinary and Agricultural Sciences, University of Melbourne, Gratten St, Parkville, Victoria, 3010, Australia.; Department of Economic Development, AgriBio, Centre for AgriBioscience, Jobs, Transport and Resources, La Trobe University, 5 Ring Rd, Bundoora, Victoria, 3083, Australia., Uauy C; John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. Cristobal.Uauy@jic.ac.uk., Hernandez P; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain. phernandez@ias.csic.es. |
Abstrakt: |
Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars. |