Abstrakt: |
Sleep spindles result from interactions between the thalamic and cortical neurons during the NREM2 stage. Studies show that these waxing and waning episodes of field potentials may have an implied role in memory consolidation, cellular plasticity and neuronal development besides serving as important markers in several neuronal pathologies. For these reasons, accurate spindle scoring of polysomnographic signals is important and has garnered interest in automating the tedious process of scoring via visual inspection. In this paper, we employ a transient model for automatic sleep spindle detection designed as a Marked Point Process (MPP). Further, in order to simplify the model development, the determination of the atoms was done independently for each of the EEG bands. However, this brings the problem of quantifying the effect of the required bandpass filtering, which was not done in previous work. Here we change the Q- factor of the filters and evaluate the effect on the detections provided by the model, when compared with two sleep experts. Several statistics are utilized, and we conclude that the design of the bandpass filters affects the performance. Low Q filters were thought necessary, but the results show that the optimal Q - factor is around 2. |