Photoiodocarboxylation of Activated C═C Double Bonds with CO 2 and Lithium Iodide.

Autor: Mello R; Departamento de Química Orgánica, Facultad de Farmacia , Universidad de Valencia , Avda. Vicente Andrés Estellés s.n. , 46100 Burjassot , Valencia , Spain., Arango-Daza JC; Departamento de Química Orgánica, Facultad de Farmacia , Universidad de Valencia , Avda. Vicente Andrés Estellés s.n. , 46100 Burjassot , Valencia , Spain., Varea T; Departamento de Química Orgánica, Facultad de Farmacia , Universidad de Valencia , Avda. Vicente Andrés Estellés s.n. , 46100 Burjassot , Valencia , Spain., González-Núñez ME; Departamento de Química Orgánica, Facultad de Farmacia , Universidad de Valencia , Avda. Vicente Andrés Estellés s.n. , 46100 Burjassot , Valencia , Spain.
Jazyk: angličtina
Zdroj: The Journal of organic chemistry [J Org Chem] 2018 Nov 02; Vol. 83 (21), pp. 13381-13394. Date of Electronic Publication: 2018 Oct 23.
DOI: 10.1021/acs.joc.8b02162
Abstrakt: The photolysis at 254 nm of lithium iodide and olefins 1 carrying an electron-withdrawing Z-substituent in CO 2 -saturated (1 bar) anhydrous acetonitrile at room temperature produces the atom efficient and transition metal-free photoiodocarboxylation of the C═C double bond. The reaction proceeds well for terminal olefins 1 to form the new C-I and C-C σ-bonds at the α and β-positions of the Z-substituent, respectively, and is strongly inhibited by polar protic solvents or additives. The experimental results suggest that the reaction channels through the radical anion [CO 2 •- ] in acetonitrile, yet involves different intermediates in aqueous medium. The stabilizing ion-quadrupole and electron donor-acceptor interactions of CO 2 with the iodide anion play a crucial role in the reaction course as they allow CO 2 to penetrate the solvation shell of the anion in acetonitrile, but not in water. The reaction paths and the reactive intermediates involved under different conditions are discussed.
Databáze: MEDLINE