TGF-β1-PML SUMOylation-peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) form a positive feedback loop to regulate cardiac fibrosis.

Autor: Wu D; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Huang D; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Li LL; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Ni P; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Li XX; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Wang B; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Han YN; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Shao XQ; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Zhao D; Departments of Clinical Pharmacy and Cardiology, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China., Chu WF; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China., Li BY; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
Jazyk: angličtina
Zdroj: Journal of cellular physiology [J Cell Physiol] 2019 May; Vol. 234 (5), pp. 6263-6273. Date of Electronic Publication: 2018 Sep 24.
DOI: 10.1002/jcp.27357
Abstrakt: Transforming growth factor-β (TGF-β) signaling pathway is involved in fibrosis in most, if not all forms of cardiac diseases. Here, we evaluate a positive feedback signaling the loop of TGF-β1/promyelocytic leukemia (PML) SUMOylation/Pin1 promoting the cardiac fibrosis. To test this hypothesis, the mice underwent transverse aortic constriction (3 weeks) were developed and the morphological evidence showed obvious interstitial fibrosis with TGF-β1, Pin1 upregulation, and increase in PML SUMOylation. In neonatal mouse cardiac fibroblasts (NMCFs), we found that exogenous TGF-β1 induced the upregulation of TGF-β1 itself in a time- and dose-dependent manner, and also triggered the PML SUMOylation and the formation of PML nuclear bodies (PML-NBs), and consequently recruited Pin1 into nuclear to colocalize with PML. Pharmacological inhibition of TGF-β signal or Pin1 with LY364947 (3 μM) or Juglone (3 μM), the TGF-β1-induced PML SUMOylation was reduced significantly with downregulation of the messenger RNA and protein for TGF-β1 and Pin1. To verify the cellular function of PML by means of gain- or loss-of-function, the positive feedback signaling loop was enhanced or declined, meanwhile, TGF-β-Smad signaling pathway was activated or weakened, respectively. In summary, we uncovered a novel reciprocal loop of TGF-β1/PML SUMOylation/Pin1 leading to myocardial fibrosis.
(© 2018 Wiley Periodicals, Inc.)
Databáze: MEDLINE