Distorter Characterisation Using Mutual Inductance in Electromagnetic Tracking.

Autor: Jaeger HA; Department of Electrical and Electronic Engineering, School of Engineering, University College Cork, Cork, Ireland. h.jaeger@umail.ucc.ie., Cantillon-Murphy P; Department of Electrical and Electronic Engineering, School of Engineering, University College Cork, Cork, Ireland. p.cantillonmurphy@ucc.ie.; Tyndall National Institute, Dyke Parade, Cork, Ireland. p.cantillonmurphy@ucc.ie.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2018 Sep 12; Vol. 18 (9). Date of Electronic Publication: 2018 Sep 12.
DOI: 10.3390/s18093059
Abstrakt: Electromagnetic tracking (EMT) is playing an increasingly important role in surgical navigation, medical robotics and virtual reality development as a positional and orientation reference. Though EMT is not restricted by line-of-sight requirements, measurement errors caused by magnetic distortions in the environment remain the technology's principal shortcoming. The characterisation, reduction and compensation of these errors is a broadly researched topic, with many developed techniques relying on auxiliary tracking hardware including redundant sensor arrays, optical and inertial tracking systems. This paper describes a novel method of detecting static magnetic distortions using only the magnetic field transmitting array. An existing transmitter design is modified to enable simultaneous transmission and reception of the generated magnetic field. A mutual inductance model is developed for this transmitter design in which deviations from control measurements indicate the location, magnitude and material of the field distorter to an approximate degree. While not directly compensating for errors, this work enables users of EMT systems to optimise placement of the magnetic transmitter by characterising a distorter's effect within the tracking volume without the use of additional hardware. The discrimination capabilities of this method may also allow researchers to apply material-specific compensation techniques to minimise position error in the clinical setting.
Databáze: MEDLINE