Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia.

Autor: Folsom TD; Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota., Higgins L; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota., Markowski TW; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota., Griffin TJ; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota., Fatemi SH; Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota.
Jazyk: angličtina
Zdroj: Synapse (New York, N.Y.) [Synapse] 2019 Jan; Vol. 73 (1), pp. e22069. Date of Electronic Publication: 2018 Oct 03.
DOI: 10.1002/syn.22069
Abstrakt: The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
(© 2018 Wiley Periodicals, Inc.)
Databáze: MEDLINE