Autor: |
Nagasawa J, Govek S, Kahraman M, Lai A, Bonnefous C, Douglas K, Sensintaffar J, Lu N, Lee K, Aparicio A, Kaufman J, Qian J, Shao G, Prudente R, Joseph JD, Darimont B, Brigham D, Maheu K, Heyman R, Rix PJ, Hager JH, Smith ND |
Jazyk: |
angličtina |
Zdroj: |
Journal of medicinal chemistry [J Med Chem] 2018 Sep 13; Vol. 61 (17), pp. 7917-7928. Date of Electronic Publication: 2018 Sep 04. |
DOI: |
10.1021/acs.jmedchem.8b00921 |
Abstrakt: |
About 75% of breast cancers are estrogen receptor alpha (ER-α) positive, and women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, but resistance often emerges. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and shows some activity in patients who have progressed on antihormonal agents. However, fulvestrant must be administered by intramuscular injections that limit its efficacy. We describe the optimization of ER-α degradation efficacy of a chromene series of ER modulators resulting in highly potent and efficacious SERDs such as 14n. When examined in a xenograft model of tamoxifen-resistant breast cancer, 14n (ER-α degradation efficacy = 91%) demonstrated robust activity, while, despite superior oral exposure, 15g (ER-α degradation efficacy = 82%) was essentially inactive. This result suggests that optimizing ER-α degradation efficacy in the MCF-7 cell line leads to compounds with robust effects in models of tamoxifen-resistant breast cancer derived from an MCF-7 background. |
Databáze: |
MEDLINE |
Externí odkaz: |
|