Interval Fuzzy Model for Robust Aircraft IMU Sensors Fault Detection.

Autor: Crispoltoni M; Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy. michele.crispoltoni@studenti.unipg.it., Fravolini ML; Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy. mario.fravolini@unipg.it., Balzano F; Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy. fabio.balzano@studenti.unipg.it., D'Urso S; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA. sdstig@gmail.com., Napolitano MR; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA. marcello.napolitano@mail.wvu.edu.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2018 Aug 01; Vol. 18 (8). Date of Electronic Publication: 2018 Aug 01.
DOI: 10.3390/s18082488
Abstrakt: This paper proposes a data-based approach for a robust fault detection (FD) of the inertial measurement unit (IMU) sensors of an aircraft. Fuzzy interval models (FIMs) have been introduced for coping with the significant modeling uncertainties caused by poorly modeled aerodynamics. The proposed FIMs are used to compute robust prediction intervals for the measurements provided by the IMU sensors. Specifically, a nonlinear neural network (NN) model is used as central prediction of the sensor response while the uncertainty around the central estimation is captured by the FIM model. The uncertainty has been also modelled using a conventional linear Interval Model (IM) approach; this allows a quantitative evaluation of the benefits provided by the FIM approach. The identification of the IMs and of the FIMs was formalized as a linear matrix inequality (LMI) optimization problem using as cost function the (mean) amplitude of the prediction interval and as optimization variables the parameters defining the amplitudes of the intervals of the IMs and FIMs. Based on the identified models, FD validation tests have been successfully conducted using actual flight data of a P92 Tecnam aircraft by artificially injecting additive fault signals on the fault free IMU readings.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje