Investigation of the Li-ion conduction behavior in the Li 10 GeP 2 S 12 solid electrolyte by two-dimensional T 1 -spin alignment echo correlation NMR.

Autor: Paulus MC; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; RWTH Aachen University, Institut für Technische und Makromolekulare Chemie (ITMC), D-52074 Aachen, Germany. Electronic address: m.paulus@fz-juelich.de., Graf MF; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; RWTH Aachen University, Institut für Technische und Makromolekulare Chemie (ITMC), D-52074 Aachen, Germany., Harks PPRML; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands., Paulus A; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany., Schleker PPM; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; Max-Planck-Institute for Chemical Energy Conversions, Mülheim an der Ruhr, Germany., Notten PHL; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands., Eichel RA; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; RWTH Aachen University, Institut für Physikalische Chemie (IPC), D-52074 Aachen, Germany., Granwehr J; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany; RWTH Aachen University, Institut für Technische und Makromolekulare Chemie (ITMC), D-52074 Aachen, Germany.
Jazyk: angličtina
Zdroj: Journal of magnetic resonance (San Diego, Calif. : 1997) [J Magn Reson] 2018 Sep; Vol. 294, pp. 133-142. Date of Electronic Publication: 2018 Jul 17.
DOI: 10.1016/j.jmr.2018.07.008
Abstrakt: Li 10 GeP 2 S 12 (LGPS) is the fastest known Li-ion conductor to date due to the formation of one-dimensional channels with a very high Li mobility. A knowledge-based optimization of such materials for use, for example, as solid electrolyte in all-solid-state batteries requires, however, a more comprehensive understanding of Li ion conduction that considers mobility in all three dimensions, mobility between crystallites and different phases, as well as their distributions within the material. The spin alignment echo (SAE) nuclear magnetic resonance (NMR) technique is suitable to directly probe slow Li ion hops with correlation times down to about 10 -5  s, but distinction between hopping time constants and relaxation processes may be ambiguous. This contribution presents the correlation of the 7 Li spin lattice relaxation (SLR) time constants (T 1 ) with the SAE decay time constant τ c to distinguish between hopping time constants and signal decay limited by relaxation in the τ c distribution. A pulse sequence was employed with two independently varied mixing times. The obtained multidimensional time domain data was processed with an algorithm for discrete Laplace inversion that does not use a non-negativity constraint to deliver 2D SLR-SAE correlation maps. Using the full echo transient, it was also possible to estimate the NMR spectrum of the Li ions responsible for each point in the correlation map. The signal components were assigned to different environments in the LGPS structure.
(Copyright © 2018 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE