Differing responses of red abalone ( Haliotis rufescens ) and white abalone ( H. sorenseni ) to infection with phage-associated Candidatus Xenohaliotis californiensis.

Autor: Vater A; Integrative Pathobiology Graduate Group, University of California, Davis, Davis, United States of America., Byrne BA; Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, United States of America., Marshman BC; Shellfish Health Laboratory, California Department of Fish and Wildlife, Bodega Bay, United States of America., Ashlock LW; Shellfish Health Laboratory, California Department of Fish and Wildlife, Bodega Bay, United States of America., Moore JD; Shellfish Health Laboratory, California Department of Fish and Wildlife, Bodega Bay, United States of America.; Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, Davis, United States of America.
Jazyk: angličtina
Zdroj: PeerJ [PeerJ] 2018 Jun 25; Vol. 6, pp. e5104. Date of Electronic Publication: 2018 Jun 25 (Print Publication: 2018).
DOI: 10.7717/peerj.5104
Abstrakt: The Rickettsiales-like prokaryote and causative agent of Withering Syndrome (WS)- Candidatus Xenohaliotis californiensis ( Ca. Xc)-decimated black abalone populations along the Pacific coast of North America. White abalone- Haliotis sorenseni -are also susceptible to WS and have become nearly extinct in the wild due to overfishing in the 1970s. Candidatus Xenohaliotis californiensis proliferates within epithelial cells of the abalone gastrointestinal tract and causes clinical signs of starvation. In 2012, evidence of a putative bacteriophage associated with Ca. Xc in red abalone- Haliotis rufescens -was described. Recently, histologic examination of animals with Ca. Xc infection in California abalone populations universally appear to have the phage-containing inclusions. In this study, we investigated the current virulence of Ca. Xc in red abalone and white abalone at different environmental temperatures. Using a comparative experimental design, we observed differences over time between the two abalone species in mortality, body condition, and bacterial load by quantitative real time PCR (qPCR). By day 251, all white abalone exposed to the current variant of Ca. Xc held in the warm water (18.5 °C) treatment died, while red abalone exposed to the same conditions had a mortality rate of only 10%, despite a relatively heavy bacterial burden as determined by qPCR of posterior esophagus tissue and histological assessment at the termination of the experiment. These data support the current status of Ca . Xc as less virulent in red abalone, and may provide correlative evidence of a protective phage interaction. However, white abalone appear to remain highly susceptible to this disease. These findings have important implications for implementation of a white abalone recovery program, particularly with respect to the thermal regimes of locations where captively-reared individuals will be outplanted.
Competing Interests: The authors declare there are no competing interests.
Databáze: MEDLINE