Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales.
Autor: | Kerkman JN; Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands., Daffertshofer A; Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands., Gollo LL; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.; The University of Queensland, St. Lucia, Queensland 4072, Australia.; Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.; National Institute for Dementia Research, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia., Breakspear M; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.; Metro North Mental Health Service, Brisbane, Queensland, Australia., Boonstra TW; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.; Black Dog Institute, University of New South Wales, Sydney, New South Wales, Australia. |
---|---|
Jazyk: | angličtina |
Zdroj: | Science advances [Sci Adv] 2018 Jun 27; Vol. 4 (6), pp. eaat0497. Date of Electronic Publication: 2018 Jun 27 (Print Publication: 2018). |
DOI: | 10.1126/sciadv.aat0497 |
Abstrakt: | Human motor control requires the coordination of muscle activity under the anatomical constraints imposed by the musculoskeletal system. Interactions within the central nervous system are fundamental to motor coordination, but the principles governing functional integration remain poorly understood. We used network analysis to investigate the relationship between anatomical and functional connectivity among 36 muscles. Anatomical networks were defined by the physical connections between muscles, and functional networks were based on intermuscular coherence assessed during postural tasks. We found a modular structure of functional networks that was strongly shaped by the anatomical constraints of the musculoskeletal system. Changes in postural tasks were associated with a frequency-dependent reconfiguration of the coupling between functional modules. These findings reveal distinct patterns of functional interactions between muscles involved in flexibly organizing muscle activity during postural control. Our network approach to the motor system offers a unique window into the neural circuitry driving the musculoskeletal system. |
Databáze: | MEDLINE |
Externí odkaz: |