Scaling law for excitons in 2D perovskite quantum wells.

Autor: Blancon JC; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. jblancon@lanl.gov., Stier AV; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Tsai H; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.; Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA., Nie W; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Stoumpos CC; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA., Traoré B; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000, Rennes, France., Pedesseau L; Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, F-35000, Rennes, France., Kepenekian M; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000, Rennes, France., Katsutani F; Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA., Noe GT; Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA., Kono J; Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA.; Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.; Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA., Tretiak S; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Crooker SA; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Katan C; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000, Rennes, France., Kanatzidis MG; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA., Crochet JJ; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Even J; Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, F-35000, Rennes, France. jacky.even@insa-rennes.fr., Mohite AD; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. adm4@rice.edu.; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA. adm4@rice.edu.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2018 Jun 08; Vol. 9 (1), pp. 2254. Date of Electronic Publication: 2018 Jun 08.
DOI: 10.1038/s41467-018-04659-x
Abstrakt: Ruddlesden-Popper halide perovskites are 2D solution-processed quantum wells with a general formula A 2 A' n-1 M n X 3n+1 , where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m 0 to 0.186 m 0 and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness.
Databáze: MEDLINE