Autor: |
Windle CD; Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France. vincent.artero@cea.fr., Massin J; Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France. vincent.artero@cea.fr., Chavarot-Kerlidou M; Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France. vincent.artero@cea.fr., Artero V; Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France. vincent.artero@cea.fr. |
Abstrakt: |
A protocol that combines gas chromatography and a high-sensitivity micro Clark-type electrode is described to quantify hydrogen production across gas and solution phases for systems operating at very low currents such as dye-sensitized H 2 -evolving photocathodes. Data indicate that a significant fraction of H 2 remains in aqueous solution even after several hours of experiments. Using this protocol, re-evaluation of a dye-sensitized H 2 -evolving photocathode based on a dye-catalyst dyad showed a reproducible 66% increase of the faradaic efficiency compared with previously reported headspace GC measurements [Kaeffer et al., J. Am. Chem. Soc., 2016, 138, 12308-12311]. This dyad was based on an organic push-pull dye where donor and acceptor are separated by one thiophene group. Insertion of a second thiophene group between the donor and acceptor led to a more efficient system with 30% improved faradaic efficiency for H 2 evolution. |