Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.

Autor: Badetti M; Université Paris-Est, Laboratoire Navier, IFSTTAR, ENPC, CNRS (UMR8205), 2 Allée Kepler, Cité Descartes, F-77420, Champs-sur-Marne, France., Fall A; Université Paris-Est, Laboratoire Navier, IFSTTAR, ENPC, CNRS (UMR8205), 2 Allée Kepler, Cité Descartes, F-77420, Champs-sur-Marne, France., Chevoir F; Université Paris-Est, Laboratoire Navier, IFSTTAR, ENPC, CNRS (UMR8205), 2 Allée Kepler, Cité Descartes, F-77420, Champs-sur-Marne, France., Roux JN; Université Paris-Est, Laboratoire Navier, IFSTTAR, ENPC, CNRS (UMR8205), 2 Allée Kepler, Cité Descartes, F-77420, Champs-sur-Marne, France. jean-noel.roux@ifsttar.fr.
Jazyk: angličtina
Zdroj: The European physical journal. E, Soft matter [Eur Phys J E Soft Matter] 2018 May 28; Vol. 41 (5), pp. 68. Date of Electronic Publication: 2018 May 28.
DOI: 10.1140/epje/i2018-11677-8
Abstrakt: Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.
Databáze: MEDLINE