Autor: |
Solon AP; Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA., Horowitz JM; Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA. |
Jazyk: |
angličtina |
Zdroj: |
Physical review letters [Phys Rev Lett] 2018 May 04; Vol. 120 (18), pp. 180605. |
DOI: |
10.1103/PhysRevLett.120.180605 |
Abstrakt: |
For two canonical examples of driven mesoscopic systems-a harmonically trapped Brownian particle and a quantum dot-we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic. |
Databáze: |
MEDLINE |
Externí odkaz: |
|