Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.

Autor: Hou G; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Ma X; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Sun Q; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Ai Q; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Xu X; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Chen L; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Li D; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Chen J; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Zhong H; National Key Lab of Power Sources , Tianjin Institute of Power Sources , Tianjin 300384 , P.R. China., Li Y; National Key Lab of Power Sources , Tianjin Institute of Power Sources , Tianjin 300384 , P.R. China., Xu Z; National Key Lab of Power Sources , Tianjin Institute of Power Sources , Tianjin 300384 , P.R. China., Si P; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Feng J; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Zhang L; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China., Ding F; National Key Lab of Power Sources , Tianjin Institute of Power Sources , Tianjin 300384 , P.R. China., Ci L; SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2018 Jun 06; Vol. 10 (22), pp. 18610-18618. Date of Electronic Publication: 2018 May 23.
DOI: 10.1021/acsami.8b01003
Abstrakt: The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li 3 N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 -poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm -2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO 4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g -1 and a retention of 96% after 200 cycles.
Databáze: MEDLINE