Endosteal and Perivascular Subniches in a 3D Bone Marrow Model for Multiple Myeloma.

Autor: Braham MVJ; 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands ., Ahlfeld T; 2 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus , Dresden, Germany .; 3 Faculty of Medicine, Technische Universität Dresden , Dresden, Germany ., Akkineni AR; 2 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus , Dresden, Germany .; 3 Faculty of Medicine, Technische Universität Dresden , Dresden, Germany ., Minnema MC; 4 Department of Hematology, University Medical Center Utrecht Cancer Center , Utrecht, The Netherlands ., Dhert WJA; 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands .; 5 Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands ., Öner FC; 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands ., Robin C; 6 Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, The Netherlands .; 7 Department of Cell Biology, University Medical Center , Utrecht, The Netherlands ., Lode A; 2 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus , Dresden, Germany ., Gelinsky M; 2 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus , Dresden, Germany .; 3 Faculty of Medicine, Technische Universität Dresden , Dresden, Germany ., Alblas J; 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands .
Jazyk: angličtina
Zdroj: Tissue engineering. Part C, Methods [Tissue Eng Part C Methods] 2018 May; Vol. 24 (5), pp. 300-312. Date of Electronic Publication: 2018 Apr 18.
DOI: 10.1089/ten.TEC.2017.0467
Abstrakt: The bone marrow microenvironment is the preferred location of multiple myeloma, supporting tumor growth and development. It is composed of a collection of interacting subniches, including the endosteal and perivascular niche. Current in vitro models mimic either of these subniches. By developing a model combining both niches, this study aims to further enhance the ability to culture primary myeloma cells in vitro. Also, the dependency of myeloma cells on each niche was studied. A 3D bone marrow model containing two subniches was created using 3D bioprinting technology. We used a bioprintable pasty calcium phosphate cement (CPC) scaffold with seeded osteogenic multipotent mesenchymal stromal cells (O-MSCs) to model the endosteal niche, and Matrigel containing both endothelial progenitor cells (EPCs) and MSCs to model the perivascular niche. Within the model containing one or both of the niches, primary CD138 + myeloma cells were cultured and analyzed for both survival and proliferation. The 3D bone marrow model with combined subniches significantly increasing the proliferation of CD138 + myeloma cells compared to both environments separately. The developed model showed an essential role of the perivascular niche over the endosteal niche in supporting myeloma cells. The developed model can be used to study the expansion of primary myeloma cells and their interactions with varying bone marrow subniches.
Databáze: MEDLINE