RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy.

Autor: Hua H; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Zhang X; State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China., Mu H; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Meng Q; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Jiang Y; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Wang Y; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Lu X; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Wang A; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Liu S; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China., Zhang Y; School Hospital of Yantai University, Shandong Province, People's Republic of China., Wan Z; School Hospital of Yantai University, Shandong Province, People's Republic of China., Sun K; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, People's Republic of China. Electronic address: sunkx@ytu.edu.cn.
Jazyk: angličtina
Zdroj: International journal of pharmaceutics [Int J Pharm] 2018 May 30; Vol. 543 (1-2), pp. 179-189. Date of Electronic Publication: 2018 Mar 16.
DOI: 10.1016/j.ijpharm.2018.03.028
Abstrakt: Gliomas are the most common malignant brain tumor, but treatment is limited by the blood-brain barrier (BBB), especially for chemotherapeutic drugs. Although some chemotherapy drugs can pass through the BBB, many of these agents are toxic to normal brain tissue. To maximize therapeutic effects, chemotherapeutic drugs must accumulate at the glioma site. In this study, a specific ligand (the RVG29 peptide) that can combine with acetylcholine receptors was conjugated to polyethylene glycol-modified poly-(d,l-lactide-co-glycolide) (PEG-PLGA) to develop a targeted carrier; preparation of the targeted docetaxel nanoparticles (DTX-NPs) was performed by the nanoprecipitation method. The NPs were approximately 110 nm and had smooth surfaces. Enzyme-linked immunoassay results showed that the amount of receptor on the surface of glioma cells was 2.04-fold higher than that of nonmalignant cells, which may promote accumulation of RVG29-modified NPs at the targeting site. NPs showed targeting properties for glioma cells compared with the non-targeting NPs in an in vitro cellular uptake test. Targeted NPs also showed better BBB penetration in an in vitro model. In vivo tests indicated that RVG29-PEG-PLGA-NPs could selectively accumulate in intracranial glioma tissue. In conclusion, these results indicated that the RVG29-modified NPs have potential efficacy for glioma therapy.
(Copyright © 2018 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE