Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.

Autor: Tung QN; Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany., Linzner N; Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany., Loi VV; Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany., Antelmann H; Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany. Electronic address: haike.antelmann@fu-berlin.de.
Jazyk: angličtina
Zdroj: Free radical biology & medicine [Free Radic Biol Med] 2018 Nov 20; Vol. 128, pp. 84-96. Date of Electronic Publication: 2018 Feb 15.
DOI: 10.1016/j.freeradbiomed.2018.02.018
Abstrakt: Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed to compare the redox potentials among different clinical isolates of these pathogens in relation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat antimicrobial resistance.
(Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE