Molecular characterization of feline melanocortin 4 receptor and melanocortin 2 receptor accessory protein 2.

Autor: Habara M; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Mori N; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan., Okada Y; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Kawasumi K; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Nakao N; Laboratory of Animal Physiology, Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Tanaka Y; Department of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Arai T; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan., Yamamoto I; Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan. Electronic address: ichiroy@nvlu.ac.jp.
Jazyk: angličtina
Zdroj: General and comparative endocrinology [Gen Comp Endocrinol] 2018 May 15; Vol. 261, pp. 31-39. Date of Electronic Publication: 2018 Jan 31.
DOI: 10.1016/j.ygcen.2018.01.020
Abstrakt: Melanocortin 4 receptor (MC4R), which is a member of the G protein-coupled receptor (GPCR) family, mediates regulation of energy homeostasis upon the binding of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS). Melanocortin 2 receptor accessory protein 2 (MRAP2) modulates the function of MC4R. We performed cDNA cloning of cat MC4R and MRAP2 and characterized their amino acid sequences, mRNA expression patterns in cat tissues, protein-protein interactions, and functions. We found high sequence homology (>88%) with other mammalian MC4R and MRAP2 encoding 332 and 206 amino acid residues, respectively. Reverse transcription-polymerase chain reaction analysis revealed that cat MC4R and MRAP2 mRNA were expressed highly in the CNS. In CHO-K1 cells transfected with cat MC4R, stimulation with α-MSH increased intracellular cyclic adenosine monophosphate (cAMP) concentration in a dose-dependent manner. Furthermore, the presence of MRAP2 enhanced the cat MC4R-mediated cAMP production. These results suggested that cat MC4R acts as a neuronal mediator in the CNS and that its function is modulated by MRAP2. In addition, our NanoBiT study showed the dynamics of their interactions in living cells; stimulation with α-MSH slightly affected the interaction between MC4R and MRAP2, and did not affect MC4R homodimerization, suggesting that they interact in the basal state and that structural change of MC4R by activation may affect the interaction between MC4R and MRAP2.
(Copyright © 2018 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE