Serenity: A subsystem quantum chemistry program.

Autor: Unsleber JP; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Dresselhaus T; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Klahr K; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Schnieders D; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Böckers M; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Barton D; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany., Neugebauer J; Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, Münster, 48149, Germany.
Jazyk: angličtina
Zdroj: Journal of computational chemistry [J Comput Chem] 2018 May 15; Vol. 39 (13), pp. 788-798. Date of Electronic Publication: 2018 Jan 10.
DOI: 10.1002/jcc.25162
Abstrakt: We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc.
(© 2018 Wiley Periodicals, Inc.)
Databáze: MEDLINE