Autor: |
Casagrande S; a Dipartimento di Scienze Farmaceutiche , Università degli Studi di Perugia , Perugia , Italy., Tiribuzi R; b Laboratorio di Biologia e Medicina Rigenerativa , Istituto di Ricerca Traslazionale per l'Apparato Locomotore Nicola Cerulli-LPMRI , Arezzo , Italy., Cassetti E; a Dipartimento di Scienze Farmaceutiche , Università degli Studi di Perugia , Perugia , Italy., Selmin F; c Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Milano , Italy., Gervasi GL; b Laboratorio di Biologia e Medicina Rigenerativa , Istituto di Ricerca Traslazionale per l'Apparato Locomotore Nicola Cerulli-LPMRI , Arezzo , Italy., Barberini L; d Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Perugia , Italy., Freddolini M; b Laboratorio di Biologia e Medicina Rigenerativa , Istituto di Ricerca Traslazionale per l'Apparato Locomotore Nicola Cerulli-LPMRI , Arezzo , Italy., Ricci M; a Dipartimento di Scienze Farmaceutiche , Università degli Studi di Perugia , Perugia , Italy., Schoubben A; a Dipartimento di Scienze Farmaceutiche , Università degli Studi di Perugia , Perugia , Italy., Cerulli GG; b Laboratorio di Biologia e Medicina Rigenerativa , Istituto di Ricerca Traslazionale per l'Apparato Locomotore Nicola Cerulli-LPMRI , Arezzo , Italy.; e Istituto di Clinica Ortopedica e Traumatologica , Università Cattolica del Sacro Cuore-Policlinico Universitario Agostino Gemelli , Roma , Italy., Blasi P; f Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università di Camerino , Camerino , Italy. |
Abstrakt: |
In recent decades, tissue engineering strategies have been proposed for the treatment of musculoskeletal diseases and bone fractures to overcome the limitations of the traditional surgical approaches based on allografts and autografts. In this work we report the development of a composite porous poly(dl-lactide-co-glycolide) scaffold suitable for bone regeneration. Scaffolds were produced by thermal sintering of porous microparticles. Next, in order to improve cell adhesion to the scaffold and subsequent proliferation, the scaffolds were coated with the osteoconductive biopolymers chitosan and sodium alginate, in a process that exploited electrostatic interactions between the positively charged biopolymers and the negatively charged PLGA scaffold. The resulting scaffolds were characterized in terms of porosity, degradation rate, mechanical properties, biocompatibility and suitability for bone regeneration. They were found to have an overall porosity of ∼85% and a degradation half time of ∼2 weeks, considered suitable to support de novo bone matrix deposition from mesenchymal stem cells. Histology confirmed the ability of the scaffold to sustain adipose-derived mesenchymal stem cell adhesion, infiltration, proliferation and osteo-differentiation. Histological staining of calcium and microanalysis confirmed the presence of calcium phosphate in the scaffold sections. |