Neuroprotective Effects of a Variety of Pomegranate Juice Extracts (PJE) Against the Excitotoxin Quinolinic Acid in Human Primary Neurons.

Autor: Braidy N; G.J. Guillemin, Neuroinflammation group MND and Neurodegenerative diseases Research Group, Australian School of Advanced Medicine (ASAM), Macquarie University, NSW, 2109 Australia. Tel.: +61 02 9850 2727; fax: +61 02 9850 2701. E-mail address: gilles.guillemin@mq.edu.au., Subash S, Essa MM, Vaishnav R, Al-Adawi S, Al-Asmi A, Al-Senawi H, Alobaidy AAR, Lakhtakia R, Guillemin GJ
Jazyk: angličtina
Zdroj: The journal of prevention of Alzheimer's disease [J Prev Alzheimers Dis] 2014; Vol. 1 (2), pp. 84-90.
DOI: 10.14283/jpad.2014.3
Abstrakt: Background: Quinolinic acid (QUIN) excitotoxicity is mediated by elevated intracellular Ca2+ levels, and nitric oxide (NO•) mediated oxidative stress leading to DNA damage, and cell death due to energy restriction.
Methods: We evaluated the effect of a series of pomegranate juice extracts (PJE), Helow, Malasi, Qusum, and Hamedh, with antioxidant properties on QUIN induced excitotoxicity on primary cultures of human neurons.
Results: We showed that Helow and Malasi can attenuate QUIN-induced excitotoxicity to a greater extent than Qusum and Hamedh from Oman. Similarly, both Helow and Malasi were able to attenuate QUIN-induced Ca2+ influx and nNOS activity to a greater extent compared to Qusum, and Hamedh. All extracts reduced the oxidative effects of increased NO• production, and hence preventing NAD+ depletion and cell death.
Conclusion: In addition to the well-known antioxidant properties of these natural phytochemicals, the inhibitory effect of some of these compounds on specific excitotoxic processes such as calcium influx provides additional evidence for the beneficial health effects of PJE in excitable tissue, particularly within the CNS.
Competing Interests: None
Databáze: MEDLINE