Autor: |
König Ignasiak N; Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland., Habermacher L; Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland., Taylor WR; Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland., Singh NB; Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland. |
Jazyk: |
angličtina |
Zdroj: |
Frontiers in human neuroscience [Front Hum Neurosci] 2017 Nov 10; Vol. 11, pp. 548. Date of Electronic Publication: 2017 Nov 10 (Print Publication: 2017). |
DOI: |
10.3389/fnhum.2017.00548 |
Abstrakt: |
Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability. |
Databáze: |
MEDLINE |
Externí odkaz: |
|