Proton magnetic resonance studies of triethyltin-induced edema during perinatal brain development in rabbits.

Autor: Lorenzo AV; Department of Neurosurgery, Children's Hospital, Boston, Massachusetts., Jolesz FA, Wallman JK, Ruenzel PW
Jazyk: angličtina
Zdroj: Journal of neurosurgery [J Neurosurg] 1989 Mar; Vol. 70 (3), pp. 432-40.
DOI: 10.3171/jns.1989.70.3.0432
Abstrakt: To better understand the role of myelin-associated water in the differentiation of white and gray matter in magnetic resonance (MR) imaging, changes in MR relaxation processes were studied in rabbits during myelination and after induction of cytotoxic edema with triethyltin (TET). Normal rabbits were killed at various age intervals ranging from premature (28 days' gestation) to adult, and changes in MR relaxation times (T1 and T2) and in water and electrolyte content were determined for various areas of brain and muscle. Similar measurements were made in rabbits of comparable age exposed to TET. Light and electron microscopy and MR imaging were used to follow myelin development and morphological changes induced by TET. During the first 30 postnatal days, both T1 and T2 declined by 50% in normal rabbits, a fall that paralleled the loss in brain water and sodium that occurred during the same period. Exposure to TET prolonged T1 and T2 in white but not gray matter, reflecting the accumulation of sodium and water (edema fluid) in white matter areas. Multiexponential analysis revealed a second, longer component in T2 magnetization decay of TET-exposed white matter, presumably attributable to accumulation of non-ordered water within intramyelinic vacuoles, a supposition consistent with electron microscopic and MR imaging findings. In contrast to reports by others, changes in T1 (but not T2) closely correlated with alterations in brain water (r = 0.93, df = 39). The absence of tissue disruption in the animals in the present study may account for these differences, but further studies will be required both to resolve this question and to fully understand MR images of white matter edema in mature and immature brain.
Databáze: MEDLINE