Cl-Assisted Large Scale Synthesis of Cm-Scale Buckypapers of Fe₃C-Filled Carbon Nanotubes with Pseudo-Capacitor Properties: The Key Role of SBA-16 Catalyst Support as Synthesis Promoter.
Autor: | Boi FS; College of Physical Science and Technology, Sichuan University, Chengdu 610064, China. f.boi@scu.edu.cn., He Y; Analytical & Testing Center, Sichuan University, Chengdu 610064, China. scu_heyi@126.com., Wen J; Analytical & Testing Center, Sichuan University, Chengdu 610064, China. wenjiqiu@scu.edu.cn., Wang S; Analytical & Testing Center, Sichuan University, Chengdu 610064, China. wangshanling@scu.edu.cn., Yan K; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430072, China. yank@hust.edu.cn., Zhang J; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430072, China. zhangjd@mail.hust.edu.cn., Medranda D; College of Physical Science and Technology, Sichuan University, Chengdu 610064, China. 2015521221002@stu.scu.edu.cn., Borowiec J; College of Physical Science and Technology, Sichuan University, Chengdu 610064, China. borowiec@scu.edu.cn., Corrias A; School of Physical Sciences, University of Kent, Canterbury CT2 7NZ, UK. a.corrias@kent.ac.uk. |
---|---|
Jazyk: | angličtina |
Zdroj: | Materials (Basel, Switzerland) [Materials (Basel)] 2017 Oct 23; Vol. 10 (10). Date of Electronic Publication: 2017 Oct 23. |
DOI: | 10.3390/ma10101216 |
Abstrakt: | We show a novel chemical vapour deposition (CVD) approach, in which the large-scale fabrication of ferromagnetically-filled cm-scale buckypapers is achieved through the deposition of a mesoporous supported catalyst (SBA-16) on a silicon substrate. We demonstrate that SBA-16 has the crucial role of promoting the growth of carbon nanotubes (CNTs) on a horizontal plane with random orientation rather than in a vertical direction, therefore allowing a facile fabrication of cm-scale CNTs buckypapers free from the onion-crust by-product observed on the buckypaper-surface in previous reports. The morphology and composition of the obtained CNTs-buckypapers are analyzed in detail by scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), high resolution TEM (HRTEM), and thermogravimetric analysis (TGA), while structural analysis is performed by Rietveld Refinement of XRD data. The room temperature magnetic properties of the produced buckypapers are also investigated and reveal the presence of a high coercivity of 650 Oe. Additionally, the electrochemical performances of these buckypapers are demonstrated and reveal a behavior that is compatible with that of a pseudo-capacitor (resistive-capacitor) with better performances than those presented in other previously studied layered-buckypapers of Fe-filled CNTs, obtained by pyrolysis of dichlorobenzene-ferrocene mixtures. These measurements indicate that these materials show promise for applications in energy storage systems as flexible electrodes. Competing Interests: The authors declare no conflict of interest. |
Databáze: | MEDLINE |
Externí odkaz: |