EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method.

Autor: Candra H, Yuwono M, Chai R, Nguyen HT, Su S
Jazyk: angličtina
Zdroj: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2017 Jul; Vol. 2017, pp. 463-466.
DOI: 10.1109/EMBC.2017.8036862
Abstrakt: Recognizing emotion from EEG signals is a complicated task that requires complex features and a substantial number of EEG channels. Simple algorithms to analyse the feature and reduce the EEG channel number will give an indispensable advantages. Therefore, this study explores a combination of wavelet entropy and average wavelet coefficient (WEAVE) as a potential EEG-emotion feature to classify valence and arousal emotions with the advantage of the ability to identify the occurrence of a pattern while at the same time identify the shape of a pattern in EEG emotion signal. The complexity of the feature was reduced using the Normalized Mutual Information (NMI) method to obtain a reduced number of channels. Classification with the WEAVE feature achieved 76.8% accuracy for valence and 74.3% for arousal emotion, respectively. The analysis with NMI shows that the WEAVE feature has linear characteristics and offers possibilities to reduce the EEG channels to a certain number. Further analysis also reveals that detection of valence emotion with reduced EEG channels has a different combination of EEG channels compared to arousal emotion.
Databáze: MEDLINE