Effects of dietary nitrate on respiratory physiology at high altitude - Results from the Xtreme Alps study.

Autor: Cumpstey AF; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Tremona Road, Southampton, SO16 6YD UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD UK., Hennis PJ; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK., Gilbert-Kawai ET; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK., Fernandez BO; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK., Poudevigne M; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK., Cobb A; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK., Meale P; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK., Mitchell K; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Tremona Road, Southampton, SO16 6YD UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD UK., Moyses H; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK., Pöhnl H; AURAPA, Paul-Heidelbauer-Straße 26, 74321 Bietigheim-Bissingen, Germany., Mythen MG; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK., Grocott MPW; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Tremona Road, Southampton, SO16 6YD UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD UK., Feelisch M; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Tremona Road, Southampton, SO16 6YD UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD UK; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. Electronic address: m.feelisch@soton.ac.uk., Martin DS; UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK. Electronic address: daniel.martin@ucl.ac.uk.
Jazyk: angličtina
Zdroj: Nitric oxide : biology and chemistry [Nitric Oxide] 2017 Dec 01; Vol. 71, pp. 57-68. Date of Electronic Publication: 2017 Oct 16.
DOI: 10.1016/j.niox.2017.10.005
Abstrakt: Nitric oxide (NO) production plays a central role in conferring tolerance to hypoxia. Tibetan highlanders, successful high-altitude dwellers for millennia, have higher circulating nitrate and exhaled NO (E NO ) levels than native lowlanders. Since nitrate itself can reduce the oxygen cost of exercise in normoxia it may confer additional benefits at high altitude. Xtreme Alps was a double-blinded randomised placebo-controlled trial to investigate how dietary nitrate supplementation affects physiological responses to hypoxia in 28 healthy adult volunteers resident at 4559 m for 1 week; 14 receiving a beetroot-based high-nitrate supplement and 14 receiving a low-nitrate 'placebo' of matching appearance/taste. E NO , vital signs and acute mountain sickness (AMS) severity were recorded at sea level (SL) and daily at altitude. Moreover, standard spirometric values were recorded, and saliva and exhaled breath condensate (EBC) collected. There was no significant difference in resting cardiorespiratory variables, peripheral oxygen saturation or AMS score with nitrate supplementation at SL or altitude. Median E NO levels increased from 1.5/3.0  mPa at SL, to 3.5/7.4 mPa after 5 days at altitude (D5) in the low and high-nitrate groups, respectively (p = 0.02). EBC nitrite also rose significantly with dietary nitrate (p = 0.004), 1.7-5.1  μM at SL and 1.6-6.3 μM at D5, and this rise appeared to be associated with increased levels of E NO . However, no significant changes occurred to levels of EBC nitrate or nitrosation products (RXNO). Median salivary nitrite/nitrate concentrations increased from 56.5/786 μM to 333/5,194  μM  with nitrate supplementation at SL, and changed to 85.6/641 μM and 341/4,553 μM on D5. Salivary RXNO rose markedly with treatment at SL from 0.55 μM to 5.70 μM. At D5 placebo salivary RXNO had increased to 1.90 μM whilst treatment RXNO decreased to 3.26 μM. There was no association with changes in any observation variables or AMS score. In conclusion, dietary nitrate supplementation is well tolerated at altitude and significantly increases pulmonary NO availability and both salivary and EBC NO metabolite concentrations. Surprisingly, this is not associated with changes in hemodynamics, oxygen saturation or AMS development.
(Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE