Autor: |
Barres AR; Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States., Wimmer MR; Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States., Mecozzi S; Department of Chemistry and ‡School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States. |
Jazyk: |
angličtina |
Zdroj: |
Molecular pharmaceutics [Mol Pharm] 2017 Nov 06; Vol. 14 (11), pp. 3916-3926. Date of Electronic Publication: 2017 Oct 10. |
DOI: |
10.1021/acs.molpharmaceut.7b00624 |
Abstrakt: |
The presence of a perfluorocarbon block in a multiblock polymer has been shown to be an additional driving force toward nanoparticle assembly. In the preparation of nanoemulsions, this perfluorocarbon block also provides enhanced particle stability. Herein, the synthesis of a new triphilic, semifluorinated copolymer, M2F8H18, is introduced. This ABC type block copolymer can be used to formulate extremely stable nanoemulsions, assembled around a lipophilic droplet, with lifetimes of one year or more. The central oil droplet can stably solubilize high concentrations of hydrophobic drugs, making this system an ideal drug delivery vehicle. The incorporation of the perfluorocarbon block modulates drug release from the lipophilic core via the surrounding fluorous shell. Fluorous imaging agents incorporated into the fluorous shell prolong drug release even further as well as provide potent 19 F-MRI contrast ability. In vitro studies show that these nanoemulsions efficiently inhibit cancer cell growth, thus providing a theranostic drug delivery system. |
Databáze: |
MEDLINE |
Externí odkaz: |
|