Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.

Autor: van Gastelen S; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands. Electronic address: sanne.vangastelen@wur.nl., Visker MHPW; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Animal Breeding and Genomics Centre, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands., Edwards JE; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, PO Box 8033, 6700 EJ Wageningen, the Netherlands., Antunes-Fernandes EC; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Food Quality and Design Group, Wageningen University & Research, PO Box 17, 6700 AH Wageningen, the Netherlands., Hettinga KA; Food Quality and Design Group, Wageningen University & Research, PO Box 17, 6700 AH Wageningen, the Netherlands., Alferink SJJ; Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands., Hendriks WH; Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands., Bovenhuis H; Animal Breeding and Genomics Centre, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands., Smidt H; Laboratory of Microbiology, Wageningen University & Research, PO Box 8033, 6700 EJ Wageningen, the Netherlands., Dijkstra J; Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands.
Jazyk: angličtina
Zdroj: Journal of dairy science [J Dairy Sci] 2017 Nov; Vol. 100 (11), pp. 8939-8957. Date of Electronic Publication: 2017 Sep 13.
DOI: 10.3168/jds.2016-12367
Abstrakt: Complex interactions between rumen microbiota, cow genetics, and diet composition may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and the interaction between linseed oil and DGAT1 on CH 4 and H 2 emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with DGAT1 KK genotype and 12 with DGAT1 AA genotype) were fed 2 diets in a crossover design: a control diet and a linseed oil diet (LSO) with a difference of 22 g/kg of dry matter (DM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30% grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N and energy balance, and CH 4 emission were measured in climate respiration chambers, and rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by DGAT1 interactions were observed for digestibility, milk production and composition, energy and N balance, CH 4 and H 2 emissions, and rumen volatile fatty acid concentrations. The DGAT1 KK genotype was associated with a lower proportion of polyunsaturated fatty acids in milk fat, and with a higher milk fat and protein content, and proportion of saturated fatty acids in milk fat compared with the DGAT1 AA genotype, whereas the fat- and protein-corrected milk yield was unaffected by DGAT1. Also, DGAT1 did not affect nutrient digestibility, CH 4 or H 2 emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen bacterial and archaeal composition was also unaffected in terms of the whole community, whereas at the genus level the relative abundances of some bacterial genera were found to be affected by DGAT1. The DGAT1 KK genotype was associated with a lower metabolizability (i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N efficiency compared with the DGAT1 AA genotype. The LSO diet tended to decrease CH 4 production (g/d) by 8%, and significantly decreased CH 4 yield (g/kg of DM intake) by 6% and CH 4 intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect H 2 emission. The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio, and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet in terms of the whole community, with several bacterial genera found to be significantly affected by diet. These results indicate that DGAT1 does not affect enteric CH 4 emission and production pathways, but that it does affect traits other than lactation characteristics, including metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed oil reduces CH 4 emission independent of DGAT1 and affects the rumen microbiota and its fermentative activity.
(The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).)
Databáze: MEDLINE