Permanent modifications in silica produced by ion-induced high electronic excitation: experiments and atomistic simulations.

Autor: Rivera A; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid, E-28006, Spain. antonio.rivera@upm.es., Olivares J; Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Madrid, E-28049, Spain.; Instituto de Óptica 'Daza de Valdés' (CSIC), Serrano 121, Madrid, E-28006, Spain., Prada A; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid, E-28006, Spain., Crespillo ML; Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Madrid, E-28049, Spain., Caturla MJ; Departamento de Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante, E-03690, Alicante, Spain., Bringa EM; CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina., Perlado JM; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid, E-28006, Spain., Peña-Rodríguez O; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid, E-28006, Spain.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2017 Sep 06; Vol. 7 (1), pp. 10641. Date of Electronic Publication: 2017 Sep 06.
DOI: 10.1038/s41598-017-11182-4
Abstrakt: The irradiation of silica with ions of specific energy larger than ~0.1 MeV/u produces very high electronic excitations that induce permanent changes in the physical, chemical and structural properties and give rise to defects (colour centres), responsible for the loss of sample transparency at specific bands. This type of irradiation leads to the generation of nanometer-sized tracks around the ion trajectory. In situ optical reflection measurements during systematic irradiation of silica samples allowed us to monitor the irradiation-induced compaction, whereas ex situ optical absorption measurements provide information on colour centre generation. In order to analyse the results, we have developed and validated an atomistic model able to quantitatively explain the experimental results. Thus, we are able to provide a consistent explanation for the size of the nanotracks, the velocity and thresholding effects for track formation, as well as, the colour centre yield per ion and the colour centre saturation density. In this work we will discuss the different processes involved in the permanent modification of silica: collective atomic motion, bond breaking, pressure-driven atom rearrangement and ultra-fast cooling. Despite the sudden lattice energy rise is the triggering and dominant step, all these processes are important for the final atomic configuration.
Databáze: MEDLINE