Autor: |
Sechler AJ; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Tancos MA; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Schneider DJ; Emerging Pests and Pathogens Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Ithaca, New York, United States of America., King JG; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Fennessey CM; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Schroeder BK; Dept. of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, United States of America., Murray TD; Dept. of Plant Pathology, Washington State University, Pullman, Washington, United States of America., Luster DG; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Schneider WL; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America., Rogers EE; Foreign Disease/Weed Science Research Unit, Agricultural Research Service, U.S. Dept. of Agriculture, Frederick, Maryland, United States of America. |
Abstrakt: |
Rathayibacter toxicus is a forage grass associated Gram-positive bacterium of major concern to food safety and agriculture. This species is listed by USDA-APHIS as a plant pathogen select agent because it produces a tunicamycin-like toxin that is lethal to livestock and may be vectored by nematode species native to the U.S. The complete genomes of two strains of R. toxicus, including the type strain FH-79, were sequenced and analyzed in comparison with all available, complete R. toxicus genomes. Genome sizes ranged from 2,343,780 to 2,394,755 nucleotides, with 2079 to 2137 predicted open reading frames; all four strains showed remarkable synteny over nearly the entire genome, with only a small transposed region. A cluster of genes with similarity to the tunicamycin biosynthetic cluster from Streptomyces chartreusis was identified. The tunicamycin gene cluster (TGC) in R. toxicus contained 14 genes in two transcriptional units, with all of the functional elements for tunicamycin biosynthesis present. The TGC had a significantly lower GC content (52%) than the rest of the genome (61.5%), suggesting that the TGC may have originated from a horizontal transfer event. Further analysis indicated numerous remnants of other potential horizontal transfer events are present in the genome. In addition to the TGC, genes potentially associated with carotenoid and exopolysaccharide production, bacteriocins and secondary metabolites were identified. A CRISPR array is evident. There were relatively few plant-associated cell-wall hydrolyzing enzymes, but there were numerous secreted serine proteases that share sequence homology to the pathogenicity-associated protein Pat-1 of Clavibacter michiganensis. Overall, the genome provides clear insight into the possible mechanisms for toxin production in R. toxicus, providing a basis for future genetic approaches. |