Raman evidence for pressure-induced formation of diamondene.

Autor: Martins LGP; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil.; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Matos MJS; Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil., Paschoal AR; Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil., Freire PTC; Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil., Andrade NF; Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Tianguá, CE, 62320-000, Brazil., Aguiar AL; Departamento de Física, Universidade Federal do Piauí, Teresina, PI, 64049-550, Brazil., Kong J; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Neves BRA; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil., de Oliveira AB; Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil., Mazzoni MSC; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil., Filho AGS; Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil., Cançado LG; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30123-970, Brazil. cancado@fisica.ufmg.br.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2017 Jul 21; Vol. 8 (1), pp. 96. Date of Electronic Publication: 2017 Jul 21.
DOI: 10.1038/s41467-017-00149-8
Abstrakt: Despite the advanced stage of diamond thin-film technology, with applications ranging from superconductivity to biosensing, the realization of a stable and atomically thick two-dimensional diamond material, named here as diamondene, is still forthcoming. Adding to the outstanding properties of its bulk and thin-film counterparts, diamondene is predicted to be a ferromagnetic semiconductor with spin polarized bands. Here, we provide spectroscopic evidence for the formation of diamondene by performing Raman spectroscopy of double-layer graphene under high pressure. The results are explained in terms of a breakdown in the Kohn anomaly associated with the finite size of the remaining graphene sites surrounded by the diamondene matrix. Ab initio calculations and molecular dynamics simulations are employed to clarify the mechanism of diamondene formation, which requires two or more layers of graphene subjected to high pressures in the presence of specific chemical groups such as hydroxyl groups or hydrogens.The synthesis of two-dimensional diamond is the ultimate goal of diamond thin-film technology. Here, the authors perform Raman spectroscopy of bilayer graphene under pressure, and obtain spectroscopic evidence of formation of diamondene, an atomically thin form of diamond.
Databáze: MEDLINE